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Abstract. We show that in deterministic dynarical systems any oibit is associated with an
invariant spectrum of stretching numbers, i.e. numbers expressing the logarithmic divergences
of neighbouring orbits within one period, The first moment of this invariant spectrum is the
maximal Lyapunov characteristic number @cn). In the case of a chaotic domain, a single invariant
spectrum characterizes the whole domain. The invariance of this spectrum alfows the estimation
of the LCN by calculating, for short times, many orbits with initial conditions in the same
chaotic region instead of calculating one orbit for extremely long times. However, if part of
the initial conditions are in an ordered region, the average of the short-time cajculations may
deviate considerably from the Lcn. Invariant spectra appear not only for conservative but also
for dissipative systems. A few examples are given.

1. Introduction

In deterministic dynamical systems, chaotic motion is characterized by a great sensitivity on
small variations of initial conditions. Nearby chaotic orbits diverge exponentially in time ¢,
In contrast, regular orbits diverge algebraicailly in time z. One way to distinguish between
these two cases is to calculate the maximal Lyapunov characteristic number (LCN) defined
by

1. £

LCN = lim — In =—= as §f — 00 (1

1O

where £(z) is the distance between neighbouring orbits, being initially £¢0). In practice,
§(1) is a solution of the variational equations, calculated together with the orbit itself [1]. If
£(r) grows exponentially in time then In{£(z)/£(0)) grows linearly in t and the above limit
in equation (1) tends to a finite positive number which is the same for almost all directions
of £(0). If §(¢) grows as a power law, say 7, the limit in equation (1) is zero for any value
of p. Thus, an orbit can be characterized by its LCN. In practice, the numerical evaluation
of LCN is not a trivial matter, The difficulty arises from the fact that, for a reliable value
of LCN, an orbit has to be followed for an extremely long time (of the order of millions
of periods). In most real dynamical systems however, such a time scale is too long to be
realistic, e.g. in the case of galaxies, time scales larger than about a hundred periods exceed
the age of the Universe itself, A reasonable guestion. therefore, is whether there is any
alternative process to estimate the LCN of a chaotic domain that avoids the long period of
computation [2,3]. In this paper we show that it is possible to obtain accurate values of the
LCN for a chaotic domain by calculating, for a short time, many orbits starting from various
initial conditions provided that these initial conditions belong to the same chaotic domain.
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However, if part of the initial conditions are on the ordered region, the average LCN may
deviate considerably from the LCN of the chaotic region.

In section 2 we define two quantities, i.e. the stretching number and the spectrum of
stretching numbers of an orbit. In section 3, we show that the spectrum of stretching
numbers is invariant for a particular orbit and also for all orbits in the same chaotic domain.
It is this invariant property that allows us to estimate the LCN from many chaotic orbits
calculated for a short period.

2. The stretching number
Consider an area-preserving two-dimensional map
X=fxyK Y=gk kK mod 1 )

where K is a nonlinearity parameter. The tangent map is

af af

dx"——-d o+ =gy (3a)
dx dy
9g 08
== dy. 35
dy' = 3xdx+8y (3b)

Two neighbouring points (x, ¥) and {(x + dx, y - dy) define a line element ds given by
ds? = dx? + dy* (4a)
with a slope
yx = dy/dx. 4b)
After one period this line element is mapped to ds’ given by
2 = dx? 4 dy™ Ga)

and has a slope

' ag g g __f_
o= (Z+%8y) [(Z+Ly). (5b)

We define the stretching number @ as the quantity

ds’
a=ln|— & (6)
For the adopted map
_ o |es af  af 9 . )
¢ == =>In |:(8x + ayyx) + ( _)'x A4y |- O
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The LCN (1) in this case can be written;
1 N
LON = lim — ;:a; N — 0. (8)

Starting from an initial point (xo, yo. ¥x0), We can create a long sequence of triplets
(xi, ¥i» ¥x;) and the associated sequence of ;. Let dN(a) be the number of times that
the values of a; appear in the interval (a,2 + da). We define the spectrum of stretching
numbers as the distribution

3{@, K, X0, Yo, yx0) = lim(dN(a)/N da) N — . (9)

Then the LCN can be written as

+00
LCN =f S(a, K, x0, Yo, ¥xo)a da N — oo. (10)

(=]

i.e. LCN is the average value of the stretching numbers a.

3. A new invariant

‘We have investigated numerically the behaviour of the function S{a, X) in the standard
map

K
y’u—-y-l-zsin?.:rx X=x+y mod 1 (11

and we found:

(a} that this function is independent of the initial point along any particular orbit; and

(b} that in a chaotic domain this function is independent of the initial conditions, i.e.,
independent of xg, Yo, ¥:0.

First, we found that any orbit, for a given value of K, is characterized by a unique
spectrum S(a, K) which is invariant for this orbit. We checked this as follows. We plotted
the function S1{a, K) for an orbit as it comes out from the first 10° periods and then plotted
the function $2(a, X) as it comes out from the next 10° periods. We found that the two
resulting curves are afmost identical,

Such an example is shown in figure 1{¢). The full curve gives the spectrum S1{a, X)
from the first 10° periods and the dots give the spectrum S$2(a, K) from the next 10°
periods. The adopted width of the bins of a is 6a = 0.001. The initial conditions for the
corresponding orbit are xg = 0.1, y; = 0.5 and y,4 = 0.0. The value of K used for the
results of this figure is K = 0.5. This is a regular orbit. The same initial conditions give a
chaotic orbit for £ = 5.0 (figure 1(p)). The spectrum S(a, K) acquires a new shape which
is again independent of the initial point on the orbit. The same is true for any orbit that
we calculated, either chaotic or ordered. The spectrum is independent of the initial value
of the slope y.o and of the Riemannian metric used to define ds.

If we calculate an orbit for smaller time intervals we find a dispersion of the successive
points around the limiting curve S(g, K). This is seen in figure 2 where we compare the
spectrum S{(a, K), defined from 10° periods, with that defined from 10° periods. In general,
as the number of periods increases the dispersion is smaller.
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Figure 1. (¢) The invariant spectrum of stretching numbers of an orbit in the standard map
with £ = 0.5, The initial point is xg = 0.1, yp = 0.5 with y = 0.0. This is a regular orbit.
The full curve gives the spectrum of the first 10 periods and the dots give the spectrum of the
rext 10% periods, It is obvious that the spectrum is independent of the initial point of the orbit.
(&) The full curve gives the spectrum $(z, K} of the first 10% periods of the orbit starting at the
same initial conditions as the orbit in (@) but with X = 5.0. This is & chaotic orbit having a
fiew invariant spectrum. The dots give the spectrum resulting from the next 105 periods. The
Iwo spectra practically coincide.
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Figure 2. The full curve is the same as in figure 1(b). The dots give the spectrum S{a, K) as it
comes out from the first 10° periods only and show an appreciable dispersion. The dispersion
decreases as the number of periods increases. The spectrum tends to an invariant shape S(a, K)
as the number of periods tends to infinity. (In practice, to 105 periods or more.)

Then we found that the spectrum is independent of the initial conditions, provided that
they belong to the same chaotic domain of the map.

An example is shown in figure 3 where the full curve is the same as in figure 1{f) and
the dots give the function S(a, K) if we repeat the previous mapping with y,, = —1.0.
A broken curve corresponding to y.o = 1.0 is also drawn in this figure but cannot be
distinguished since it almost coincides with the full curve. It is clear from this plot that the
function S(a, K} is independent of the value of y.q.

We have repeated the mapping for a series of initial conditions varying either xp or yg
but iaking care that their values are not inside islands of organized motion. The results
show that the spectrum of stretching numbers, i.e. the function S{a, X), is independent of
the initial conditions if the initial conditions belong to the same chaotic domain of the map.

Extensive numerical investigations show that the function S(a, K) within the limits
of the available accuracy is invariant with respect to the initial conditions throughout the
whoje chaotic domain in the space (x, y, ¥,J. In the limit of infinite periods this function
represents an invariant spectrum of streching numbers.

Thus the invariant spectrum of stretching numbers becomes a very important quantity
in the case of chaotic orbits. A chaotic orhit passes from the neighbourhood of any point
belonging to the chaotic domain. In other words, all the points of a chaotic domain are
close to the same single orbit. Therefore, if we adopt any of these points as a starting point
together with its tangent map we find the same spectrum S(a, K).

A direct application of the invariant property of S{a, K) in chaotic domains is the
following. Instead of calculating one otbit for millions of periods in order to obtain S(a, X},
and hence, the LCN, we can calculate, for a short time, many orbits starting from different
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Figure 3. The full curve is the same as in figure 1(b). The dots give the spectrum of stretching
numbers if the initial point is the same but the initial slope of the tangent map is y0 = —1.0.
In the same figure a broken curve comesponding to the same xp, y and yp = 1.0 has been
drawn but cannot be distinguished because it coincides with the full curve.

initial points in the chaotic domain, The two calculations lead to the same invariant spectrum
8(a, K) and, therefore, the same Lyapunov number.

Such an example is given in figure 4 where the full curve gives the spectrum of the
reference orbit {xp = 0.1, yo = 0.5, y,¢ = 0.0 for KX = 5.0) shown in figure 1() and the
dots give the function S(a, K} obtained by calculating, for only 100 periods, the evolution
of 100 x 100 initial points located at the nodes of a 100 x 100 square grid covering an area
0.1 x 0.1 of the unit square, For every one of these initial points, the initial slope of the
respective tangent map is taken to be equal to zero. We call this set of initial points the
*sampling box’. The first point of this sampling box is exactly the first initial point of the
reference orbit (xg = 0.1, yo = 0.5, y,0 = 0.0, K = 5.0). The box is entirely in the chaotic
region. It is clear from this figure that this box reproduces the spectrum S(a, K'}.

If we choose another position for the sampling box, provided that the whole box is again
inside the chaotic region, the result is the same. The box reproduces the same spectrum
S(a, K).

However, if the location of the sampling box is chosen inside an island of organized
motion the results are completely different. Such an example is shown in figure 5. In this
figure, the spectrum of a sampling box starting at xg = 0.64, yy = 0.32 is plotted together
with the spectrum of the orbit (xg = 0.1, yp = 0.3, 3,0 = 0.0 for K = 5.0). These two
spectra are now completely different.

The spectrum restiting from the last box is not a single spectrum, It is a superposition
of many spectra corresponding to various orbits in the ordered region. If the position of the
sampling box changes, the corresponding mixture of spectra changes because new types of
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Figure 4. The full curve is the same as in figure 1(b). The dots give the spectrum resulting
from caleulating, for only 100 periods, 100 x 100 orbits having initial points in a sampling box
belonging to the chaotic domain. This calculation reproduces the same invariant spectrum.

orbits enter the box. This happens until the whole box eniers the chaotic domain where the
spectrum takes a fixed form,

However, it is possible that a given sampling box is not completely in the chaotic
domain, There is always a possibility that a given box contains some ordered regions. If
this is the case, the calculated spectrum is again an average between chaotic and ordered
spectra and the fimit is not well defined. Therefore, it is necessary to have a preliminary
investigation to check whether all the orbits in the sampling box are chaotic or not.

The same is true with regard to the Lyapunov numbers. We can define an ‘average
Lyapunov number’ (ALN) over a short interval of time, as Udry and Pfenniger [2] did for
galactic orbits. However, unless we know that all the orbits are chactic, this ALN is not
equal to the Lyapunov number defined as the Hmit (1) for individual orbits in the chaotic
region. It is only hoped that if the portion of the regular orbits in the sampling box is very
small, their effect in determining the invariant spectrum of the chaotic region may not be
important and the error in the ALN may be small,

Kandrup and Mahcen [3] have emphasized the need to select the various orbits in the
chaotic region. The Lyapunov numbers for all such orbits are the same and they are equal
to the ALN calculated for short time intervals for a large number of initial conditions.

One remark should apply to cases of small X in which there may be several chaotic
regions separated by closed KAM curves. In such cases, the spectra and LCNs in different
chaotic regions are, in general, different. Therefore our arguments about a unique spectrum
and consequently a unique Lyapunov number for all chaotic orbits refer to orbits in connected
chaotic regions that are not separated from each other by KAM curves.

We conclude by stressing the fact that we found not only an invariant Lyapunov number
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Figure 5. The full curve is the same as in figure 1(5). The dots give a spectrum resviting from
the sampling box if it is located inside an island of organized motion. This position of the box
does not reproduce the same spectrum. It gives a mixture of spectra of various orbits, If the
box moves towards the chaotic domain the corresponding mixture of spectra moves towargds the
fixed form given by the full curve,

but a much more detailed entity in the chaotic region, namely an invariant spectrum, It
is remarkable that this spectrum, which has several peculiarities {maxima and minima}, is
exactly reproduced for all the orbits of the same chaotic region.

Of course, the invariant spectrum depends on the particular mapping chosen. We have
checked that the invariant spectrum is different for other mappings. However, the existence
of invariant spectra for the chaotic regions of dynamical systems seems to be a generic
phenomenon.

4, Invariant spectra in dissipative systems

We have found that invariant specira exist not only in conservative systems but also in
dissipative systems. We have checked this by using the Hénon map [4]

¥=1-Kx—y y =bx mod 1. (12)

As is well known, this map is non-dissipative for # = 1.0 and dissipative for & < 1.0. In
figure 6(a), the full curve gives a regular orbit in the non-dissipative Hénon map (K = 0.5
and b = 1.0) and the dots give a regular orbit in the dissipative map (K =0.5and b = 0.9).
Both orbits start from the same initial point xp = 0.1, yp = 0.5. The corresponding invariant
spectra are shown in figure 6(b). The non-dissipative case is the spectrum with the five
maxima (four sharp maxima and one smooth maximum near the value of ¢ = 0.0). The
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Figure 6. (a) A non-dissipative regular orbit (full curve) of the Hénon map (K = 0.5,
b = 1.0) and a dissipative ombit (K = 0.5, b = 0.9) starting from the same initial point
(xg = 0.1,59 = 0.5). (b) The invariant spectra of the orbits of (¢). The spectrum with the five
maxima (four sharp and one smoath in the middle) belongs to the non-dissipative orbit. The
other (U-shaped) belongs to the dissipative orbit.
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Figure 7. (2) A dissipative chaotic orbit of the Hénon map for K =350, 5 =05 leading to a
strange attractor. () The invariant spectrum of the chaotic orbit leading to the strange aitractor
shown in (a).
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dissipative case is the spectrum with only two sharp maxima at the ends. Again the full
curves give the spectrum of the first 106 periods while the dots give the spectrum of the
next 10° periods. It is clear that the spectra of stretching numbers are invariant even in
dissipative systems.

In the dissipative case most of the points of the orbit in figure G(a) are concentrated
in a very small region of the phase space (attractor) and their distances tend to zero. In
spite of this, the invariant spectrum spreads to a finite region of values of 4. This region,
in comparison with the spectrum of the non-dissipative case in figure 6(&), shows a shift
towards negaiive values of a.

In figure 7(a), another example of the Hénon map is given for a chaotic orbit leading to
a strange attractor. The strange attractor appears for K = 5.0, b = 0.5 and is represented
in figure 7(a) by a large number of lanes. The corresponding invariant spectrum is shown
in figure 7(b). Again the full curve corresponds to the first million periods, starting at
xo = 0.1, yg = 0.5, y,0 = 0.0, and the dots to the next million periods. The agreement is
perfect.

It is remarkable that all types of dissipative orbits, e.g. orbits leading to a point attractor
or to a strange attractor, have characteristic invariant spectra, We are working now on
several extensions and applications of the invariant spectra. In particular, the role of the
various well defined maxima of such spectra will be discussed in a future paper.
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Note added in progf. 'We found recently some papers similar to owrs, In particular Grassberger et af [5] (and
references therein) introduce an ‘effective Lyapunov exponent’, while Froeschle ¢f af [6] define a ‘local Lyapunov
indicator’, which is essentially our ‘stretching number’, However, the main result of onr paper, namely the
invariance of the spectra with respect to the initial time along every orbit, and with respect to the initial point in
the (same) stochastic region, is new. A detailed comparison of these papers with ours will be given in a fufure
publication.
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