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1. Phyr. A Mafh. Gen. 27 (1994) 48994909. Printed in the UK 

Invariant spectra of orbits in dynamical systems 

N Voglist and G J Contopoulosff 
t Department of Astronomy. University of Athens, GR-157 84, Athens, Greece 
f Depamnent of Astronomy. University of Florida, Gainsville. FL 32611, USA 

Received 14 March 1994 

Abstract. We show that in deterministic dynamical systems any orbit is associated with an 
invariant s p e c "  of stretching numbers, i.e. numbers expressing the logarithmic divergences 
of neighbouring orbits within one period. The first moment of this invariant specmm is the 
maximal Lyapunov characteristic number WN). In the case of a chaotic domain, a single invariant 
spect" characterizes the whole domain. The invariance of this specr" allows the estimation 
of the LCN by calculating, for shon times, many orbits with initial conditions in the Same 
chaotic region instead of calculating one orbit far extremely long times. However, if part of 
the initial conditions xe in an ordered regon, the average of the shoe-time calculations may 
deviate mnsidembly from the LCN. Invariant spectra appear not only for conservative but also 
for dissipative systems. A few examples are given. 

1. Introduction 

In deterministic dynamical systems, chaotic motion is characterized by a great sensitivity on 
small variations of initial conditions. Nearby chaotic orbits diverge exponentially in time f. 
In contrast, regular orbits diverge algebraically in time t .  One way to distinguish between 
these two cases is to calculate the maximal Lyapunov characteristic number (LCN) defined 
by 

where C ( t )  is the distance between neighbouring orbits, being initially p(0). In practice, 
((f) is a solution of the variational equations, calculated together with the orbit itself [I]. If 
t(t) grows exponentially in time then In(t(t)/P(O)) grows linearly in t and the above l i t  
in equation (1) tends to a finite positive number which is the same for almost all directions 
of t(0). If:@) grows as a power law, say t o ,  the limit in equation (1) is zero for any value 
of p. Thus, an orbit can be characterized by its m. In practice, the numerical evaluation 
of LCN is not a trivial matter. The difficulty arises from the fact that, for a reliable value 
of LCN, an orbit has to be followed for an extremely long time (of the order of millions 
of periods). In most real dynamical systems however, such a time scale is too long to be 
realistic, e.g. in the case of galaxies, time scales larger than about a hundred periods exceed 
the age of the Universe itself. A reasonable question. therefore, is whether there is any 
alternative process to estimate the LCN of a chaotic domain that avoids the long period of 
computation [Z, 31. In this paper we show, that it is possible to obtain accurate values of the 
K N  for a chaotic domain by calculating, for a short time, many orbits starting from various 
initial conditions provided that these initial conditions belong to the same chaotic domain. 
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However, if part of the initial conditions are on the ordered region, the average LCN may 
deviate considerably from the LCN of the chaotic region. 

In section 2 we define two quantities, i.e. the stretching number and the spectrum of 
stretching numbers of an orbit. In section 3, we show that the spectrum of stretching 
numbers is invariant for a particular orbit and also for all orbits in the same chaotic domain. 
It is this invariant property that allows us to estimate the LCN from many chaotic orbits 
calculated for a short period. 

N Voglis and G J Contopoulos 

2. The stretching number 

Consider an area-preserving two-dimensional map 

x' = f (x, y, K) y' = g(x, y, K) mod 1 (2) 

where K is a nonlinearity parameter. The tangent map is 

Two neighbouring points (x, y) and (x + dx, y + dy) define a line element ds given by 

ds2 = dr2 + dyZ (44 

with a slope 

yx = dyjdx. 

After one period this line element is mapped to ds' given by 

dsn = dxn + dy' 

and has a slope 

We define the stretching number a' as the quantity 

For the adopted map 
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The LCN (1) in this case can be written: 

. N  
1 ' '  

LCN=lim-xCai N - +  00 
N i-I 

Starting from an initial point (no, yo, y,~),  we can create a long sequence of triplets 
(x i ,  yi. yxi )  and the associated sequence of ai. Let dN(n) be the number of times that 
the values of ni appear in the interval (&a + da). We define the spectrum of stretching 
numbers as the distribution 

S(U, K, X O ,  YO, YXO) = lii(dN(a)/Nda) N -+ 00. (9) 

Then the LCN can be written as 

to, 
LCN = l, S(a, K, XO, YO, yZo)a da N + W. (10) 

i.e. L a  is the average value of the stretching numbers a. 

3. A new invariant 

We have investigated numerically the behaviour of the function S(a. K) in the standad 
map 

(11) 
n 

y' = y f -sin21rx x ' = x  + y' mod 1 
2rr 

and we found: 
(a) that this function is independent of the initial point along any particular orbit; and 
(b) that in a chaotic domain this function is independent of the initial conditions, i.e., 

independent of no, yo, yr0. 

First, we found that any orbit, for a given value of K, is characterized by a unique 
spectrum S(a ,  K) which is invariant for this orbit. We checked this as follows. We plotted 
the function S l ( a ,  K) for an orbit as it comes out from the first lo6 periods and then plotted 
the function S2(u, K) as it comes out from the next lo6 periods. We found that the two 
resulting curves are almost identical. 

Such an example is shown in figure l(a). The full curve gives the spectrum Sl(a, K) 
from the first lo6 periods and the dots give the spectrum S2(a, K) from the next lo6 
periods. The adopted width of the bins of a is &a = 0.001. The initial conditions for the 
corresponding orbit are xo = 0.1, yo = 0.5 and yXo = 0.0. The value of K used for the 
results of this figure is K = 0.5. This is a regular orbit. The same initial conditions give a 
chaotic orbit for K = 5.0 (figure I@)). The spectrum S(a, K) acquires a new shape which 
is again independent of the initial point on the orbit. The same is true for any orbit that 
we calculated, either chaotic or ordered. The spectrum is independent of the initial value 
of the slope yzo and of the Riemannian metric used to define ds. 

If we calculate an orbit for smaller time intervals we find a dispersion of the successive 
points around the limiting curve #(U, K ) .  This is seen in figure 2 where we compare the 
spectrum S(n, K), defined from lo5 periods, with that defined from lo6 periods. In general, 
as the number of periods increases the dispersion is smaller. 
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Figure I. (U) The invariant spectrum of stretching numbers of an orbit in the standard map 
with K = 0.5. The initial point is xo = 0.1, yl, = 0.5 with yIo  = 0.0. This is a regular orbit. 
The full C W ~  gives the spectrum of the first IO6 periods and the dots give the specmm of the 
next IO6 periods. It is obvious thal the spectrum is independent of the initial point of the orbit. 
(6) The full curve gives the spectrum S(u. K) of the fin1 IOo periods of the orbit staning at the 
same initial conditions 3s the orbit in (a) but with K = 5.0. This is a chaotic orbit having a 
new invxiianl spectrum. The dots give the specwm resulting from the next IO* periods. The 
two spectra practically coincide. 
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Figure 2. The full curve is lhe same as in figure l(b). The dots give lhe spec" S(a, K) as it 
comes 001 from the first IOs periods only and show an appreciable dispersion. The dispersion 
decreases as the number of periods increases. The specmm tends lo an invariant shape S(n,  K) 
as the number of periods lends to infinity. (In practice, lo IO6 periods or more.) 

Then we found that the spectrum is independent of the initial conditions, provided that 
they beIong to the same chaotic domain of the map. 

An example is shown in figure 3 where the full curve is the same as in figure I@) and 
the dots give the function S(a, K )  if we repeat the previous mapping with yxo = -1.0. 
A broken c w e  corresponding to y a  = 1.0 is also drawn in this figure but cannot be 
distinguished since it almost coincides with the full curve. It is clear from this plot that the 
function S(a ,  K )  is independent of the value of yxo. 

We have repeated the mapping for a series of initial conditions varying either xg or yo 
but taking care that their values are not inside islands of organized motion. The results 
show that the spectrum of stretching numbers, i.e. the function S(a, K ) ,  is independent of 
the initial conditions if the initial conditions belong to the same chaotic domain of the map. 

Extensive numerical investigations show that the function S(Q, K) within the limits 
of the available accuracy is invariant with respect to the initial conditions throughout the 
whole chaotic domain in the space ( x ,  y ,  y x ) .  In the limit of infinite periods this function 
represents an invariant spectrum of streching numbers. 

Thus the invariant spectrum of stretching numbers becomes a very important quantity 
in the case of chaotic orbits. A chaotic orbit passes from the neighbourhood of any point 
belonging to the chaotic domain. In other words, all the points of a chaotic domain are 
close to the same single orbit. Therefore, if we adopt any of these points as a starting point 
together with its tangent map we find the same spectrum S(a ,  K ) .  

A direct application of the invariant property of S(a, K) in chaotic domains is the 
following. Instead of calculating one orbit for millions of periods in order to obtain S(a, K), 
and hence, the LCN, we can calculate, for a short time, many orbits starting from different 
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Flgure 3. The full cuwe is the same as in figure I(b). The dots give the specmm of slretching 
numbers if the initial point is the same but the initial slope of the tangent map is yzo = -1.0. 
In the same figure P broken curve corresponding lo the same xn, yu and y d  = 1.0 has bcen 
drawn bul cannot be distinguished because it coincides with the full CUIVC. 

initial points in the chaotic domain. The two calculations lead to the same invariant spectrum 
S(a, K )  and, therefore, the same Lyapunov number. 

Such an example is given in figure 4 where the full curve gives the spectrum of the 
reference orbit (XO = 0.1, yo = 0.5, yro = 0.0 for K = 5.0) shown in figure l(6) and the 
dots give the function S(a. K )  obtained by calculating, for only 100 periods, the evolution 
of 100 x 100 initial points located at the nodes of a 100 x 100 square grid covering an area 
0.1 x 0.1 of the unit square. For every one of these initial points, the initial slope of the 
respective tangent map is taken to be equal to zero. We call this set of initial points the 
'sampling box'. The first point of this sampling box is exactly the first initial paint of the 
reference orbit ( X O  = 0.1, yo = 0.5, yXo = 0.0, K = 5.0). The box is entirely in the chaotic 
region. It is clear from this figure that this box reproduces the spectrum S(a, K ) .  

If we choose another position for the sampling box, provided that the whole box is again 
inside the chaotic region, the result is the same. The box reproduces the same spectrum 
S(a, K). 

However, if the location of the sampling box is chosen inside an island of organized 
motion the results are completely different. Such an example is shown in figure 5. In this 
figure, the spectrum of a sampling box starting at xg = 0.64, yo = 0.32 is plotted together 
with the spectrum of the orbit (XO = 0.1, yo = O S ,  yxo = 0.0 for K = 5.0). These two 
spectra are now completely different. 

The spectrum resclting from the last box is not a single spectrum. It is a superposition 
of many spectra corresponding to various orbits in the ordered region. If the position of the 
sampling box changes, the corresponding mixture of spectra changes because new types of 
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Figure 4. The full C U N ~  is the same as in figure i(b). The dots give the spectrum resulting 
from calculating, for only 100 periods. 100 x 100 orbits having initial points in a sampling box 
belonBng to the chaotic domain. This calculauon reproducer the same invariant specwm. 

orbits enter the box. This happens until the whole box enters the chaotic domain where the 
spectrum takes a fixed form. 

However, it is possible that a given sampling box is not completely in the chaotic 
domain. There is always a possibi1iQ that a given box contains some ordered regions. If 
this is the case, the calculated specmm is again an average between chaotic and ordered 
spectra and the limit is not well defined. Therefore, it is necessary to have a preliminary 
investigation to check whether all the orbits in the sampling box are chaotic or not. 

The same is true with regard to the Lyapunov numbers. We can define an ‘average 
Lyapunov number’ (ALN) over a short interval of time, as Udry and Pfenniger [Z] did for 
galactic orbits. However, unless we know that all the orbits are chaotic, this Am is not 
equal to the Lyapunov number defined as the limit (1) for individual orbits in the chaotic 
region. It is only hoped that if the portion of the regular orbits in the sampling box is very 
small, their effect in determining the invariant spectrum of the chaotic region may not be 
important and the error in the ALN may be small. 

Kandrup and Mahon [3] have emphasized the need to select the various orbits in the 
chaotic region. The Lyapunov numbers for all such orbits are the same and they are equal 
to the ALN calculated for short time intervals for a large number of initial conditions. 

One remark should apply to cases of small K in which there may be several chaotic 
regions separated by closed KAM curves. In such cases, the spectra and LCNS in different 
chaotic regions are, in general, different. Therefore OUT arguments about a unique spectrum 
and consequently a unique Lyapunov number for all chaotic orbits refer to orbits in connected 
chaotic regions that are not separated &om each other by KAM curves. 

We conclude by stressing the fact that we found not only an invariant Lyapunov number 
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Figure 5. The full curve is the same as in figure I(b). The dots give a spectrmn resulting tiom 
the sampling box if it h located inside an island of organized motion. This position of the box 
does not reproduce the same spectrum. It gives a mixture of spectra of various orbits. If the 
box moves towards the chaotic domain the corresponding mixture of spectra moves towards (he 
fixed form given by lhe fuU curve. 

but a much more detailed entity in the chaotic region, namely an invariant spectrum. It 
is remarkable that this spectrum, which has several peculiarities (maxima and minima), is 
exactly reproduced for all the orbits of the same chaotic region. 

Of course, the invariant spectrum depends on the particular mapping chosen. We have 
checked that the invariant spectrum is different for other mappings. However, the existence 
of invariant spectra for the chaotic regions of dynamical systems seems to be a generic 
phenomenon. 

4. Invariant spectra in dissipative systems 

We have found that invariant spectra exist not only in conservative systems but also in 
dissipative systems. We have checked this by using the H6non map [4] 

(12) 

As is well known, this map is non-dissipative for b = 1.0 and dissipative forb c 1.0. In 
figure 6(a), the full curve gives a regular orbit in the non-dissipative Hdnon map (K = 0.5 
and b = 1.0) and the dots give a regular orbit in the dissipative map (K = 0.5 and b = 0.9). 
Both orbits start from the same initial point xo = 0.1, yo = 0.5. The corresponding invariant 
spectra are shown in figure 6(b). The non-dissipative case is the spectrum with the five 
maxima (four sharp maxima and one smooth maximum near the value of U = 0.0). The 

2 x ' = l - K x  - y  y '=bx mod 1. 
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Figure 6. ((1) A non-dissipative regular orbit (full curve) of the Henon map (K = 0.5, 
h = 1.0) and a dissipadve orbit (K = 0.5, b = 0.9) stming from the same initial point 
(xo = O.l,yo = 0.5). (b) The invariant spectra of the orbits of (0). The s p e c r "  with the five 
maxima (four sharp nnd one smooth in lhe middle) belongs to lhe non-dissipative orbit. The 
other (U-shaped) belongs to the dissipative orbit. 



Figure 7. (a) A dirsipAve chaotic orbil of the Henon map for K = 5.0, b = 0.5 hding to a 
strange ~ 1 0 1 .  (b) The invariant spectrum of the chaotic orbit l d i g  to the s a g e  a ~ o r  
shown in (a). 
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dissipative case is the spectrum with only two sharp maxima at the ends. Again the full 
curves give the spectrum of the first IO6 periods while the dots give the spectrum of the 
next IO6 periods. It is clear that the spectra of stretching numbers are invariant even in 
dissipative systems. 

In the dissipative case most of the points of the orbit in figure 6(a) are concentrated 
in a very small region of the phase space (attractor) and their distances tend to zero. In 
spite of this, the invariant spectrum spreads to a finite region of values of a. This region, 
in comparison with the spectrum of the non-dissipative case in figure 6(b), shows a shift 
towards negaiive values of a. 

In figure 7(a), another example of the H6non map is given for a chaotic orbit leading to 
a strange attractor. The strange attractor appears for K = 5.0, b = 0.5 and is represented 
in figure 7(a) by a large number of lanes. The corresponding invariant spectrum is shown 
in figure 7(b). Again the full curve corresponds to the first million periods, starting at 
XO = 0.1, yo = 0.5, yXo = 0.0, and the dots to the next million periods. The agreement is 
perfect. 

It is remarkable that all types of dissipative orbits, e.g. orbits leading to a point attractor 
or to a strange attractor, have characteristic invariant spectra. We are working now on 
several extensions and applications of the invariant spectra. In particular, the role of the 
various well defined maxima of such spectra will be discussed in a future paper. 
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Note added in prosf. We found recently some papers similar to ours. In particular Gmssberger et d [51 (and 
refmnces therein) introduce an ‘effective Lyapunov exponent’. while Froeschle el a1 161 define a ‘local Lyapunov 
indicator’, which is essentially our ‘stretching number’. However, the main result of our paper, namely the 
invariance of the specaa with respect to the initial time along every orbic and with respect to the initial point in 
the (same) stochastic region, is new. A detailed wmparison of these papen with ours will be given in a f u m  
publication. 
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